

CCB Major Objectives

- Establish a new integrated multidisciplinary research center in computational neurobiology.
- Develop Atlases sets of maps on different spheres of biological information that span many resolution-scales, image-modalities, species, genotypes & phenotypes.
- Introduce new mathematical symbolic representations of pertinent biological information across space & time.
- Develop, implement and test computational tools that are applicable across different biological systems & atlases.

CCB 2004 Accomplishments

- CCB COO on board (Ivo Dinov, Ph.D.)
- CCB Web fully functional (general/CCB access)
- Joint Pubs LONI/IPAM/Math/CS

 –33 pubs, 3 book chapters, 34 abstracts, 7 proceedings (in PNAS, Nature Neuroscience, Nature Reviews)
- CCB Kickoff All-Day meeting 11/06/04
 Agenda, Minutes, Attendees, Deliverable, etc. posted online
- Summer Math of Biomed Imaging Workshop LONI/IPAM

 2 weeks, 40 speakers, 200 attendees
 Published Proceedings (Elsevier, NeuroImage, Vol. 23, Supp. 1, 300 pgs, Oct. 2004)
- Recruited 3 postdocs, 4 grads & 2 undergrads in 2004

Core 1: SA 2 Areas of investigation

- Shape representation: current approaches have limitations, thorough experimental validation and comparison
- Shape matching: global integration computationally challenging
- Deformation: capturing phenomenology of shape despite deformations
- Temporal shape evolution

Shape representation

- Quotient Spaces (homogeneous space):
 - e.g. $\mathbb{R}^{3N}/SE(3)$ (procrustean metric)
 - (Euclidean, affine) curvature
- Local representations
 - Jacobian of diffeomorphic map nation at las [Woods]
- Integral/differential invariants [Soatto]
- Global representations (2-D)
 - Signed-distance functions [Chan]
 - Kernelized splines [Cremers]
 - Harmonic embedding [Soatto]

Statistical analysis of shape

- Compute "mean" "covariance"
- Principal component analysis, linear discriminant analysis ...
- Leventon-Grimson-Faugeras: "let us represent shape with a signed-distance function" (Eikonal equation)
- Problems:
 - Representation is non-linear after SE(3) quotiented out
 - Even without quotient, signed distance functions are NOT a linear space!

Core 1: SA 3 Surface & Volume Conformal Mapping

- Conformal Structure has been a central concept in mathematics for centuries
- A joint field of complex analysis, differential geometry, algebraic geometry.
- Compared to algebraic topology, differential topology and differential geometry, Conformal geometry theory has not been broadly applied in computer science.

Multi-layer Level Sets

- Extend multi-layer models using more than one level line of a Lipschitz continuous function
- Potentially more efficient than Chan-Vese
- Captures the nested structures in the scene
- We can impose specific "anatomic" constraints
- May be suitable for measuring the thickness of the gray matter (2 nested level-lines needed)
- May be suitable for segmenting MS lesions in MR data

SA 4: Visiting Scholars Program

- CCB faculty will invite visiting scholars
- Establish mechanism to apply to be visiting scholar
 - Visits ranging from 2-3 days to 2-3 months
 - How much funding is available and when does it start?
 - Can other cores provide financial support for visiting scholars?
- Advertising & recruitment

Scope, Means & Aims

- **Expand workshop and symposia activities** as a vehicle for formal dissemination.
- Design curricula and materials (see Core 5) and adapt them for wider distribution outside UCLA.
- Develop publication materials in the form of books, special issues in high profile journals and review articles.
 - **Create unique materials** and illustrations (e.g., interactive visualization).

Scope, Means & Aims

- Extend database efforts to disseminate activities.
- Enhance web description of participating laboratories, investigators and projects.
- Utilize media interest to promote the CCB and help disseminate information about its activities.

Core 7: Administration & Management

- Facilitate info exchange between projects, faculty, training programs and institutional entities;
- Ensure that physical and human resources are utilized to their maximum advantage throughout the program;
- Monitor and adjust, as needed, structural and functional aspects of the program (i.e., committee memberships, adding or deleting workshops, etc.);

Core 7: Administration & Management

- Establish operational mechanisms for the program such as meetings, budgetary control and programmatic reporting;
- Establish outreach mechanisms and commercial relationships.
- Coordinate public relations.

		unication & Monitori	
	Committee/Group Name	Chair	Members
	A II-Hands	Toga / Dinov	All CCB Members
1	Scientific Projects	Thompson	Thompson, Shattuck, Dinov, Toga, Sowell, Voskuhl, Cannon
	External Advisory Board	TBN	TBN
Int	rastructure, Web, Systems & Technology	Valentino	Wang, Dinov, Neu, Magsipoc, Parker, Pan, Shattuck, Vese, Hammond, Capetillo-Cunife
	Modeling and Visualization	Shattuck	Heng, Dinov, Shin, Zhang, Pan, Hammond, Wang, Parker
	Mathematics and Computer Science	Osher	Soatto, Vese, Dinov, Lee, Parker, Shattuck, Thompson, Wang, Chan
	Product Development	Valentino	Wang, Dinov, Neu, Magsipoc, Parker, Pan, Shattuck, Vese, Zhang, Xu
	PR, Media and Outreach	Toga	Shattuck, Dinov, Thompson, Chan
	HR and Recruitment	Toga	Shattuck, Dinov, Thompson, Chan

